A Curiosity Concerning the Representation of Integers in Noninteger Bases

By G. W. Stewart

Abstract

In this note it is shown how an integer x can be represented uniquely in a noninteger basis provided the "digits" of the representation are allowed to be nonintegers. It is then shown that the integer parts of these "digits" contain all the information necessary to recover x.

Let β be an integer greater than one and let x_{0} be a nonnegative integer. Then x_{0} has a unique base $-\beta$ representation of the form

$$
\begin{equation*}
x_{0}=d_{0}+d_{1} \beta+d_{2} \beta^{2}+\cdots+d_{n} \beta^{n} \tag{1}
\end{equation*}
$$

where the digits d_{i} are integers satisfying

$$
\begin{equation*}
0 \leq d_{i}<\beta \quad(i=0,1, \ldots, n) \tag{2}
\end{equation*}
$$

When we relax the restriction that β be an integer and allow it to be a real number greater than one, we must also relax the restriction that the d_{i} be integers, in which case x_{0} can be represented in infinitely many different ways in the form (1) where the digits satisfy (2). To obtain a unique representation, we must impose additional conditions. Perhaps the most natural is to demand that in addition to (2) the quantities x_{i} defined by

$$
\begin{align*}
& x_{n}=d_{n} \\
& x_{i}=d_{i}+\beta x_{i+1} \quad(i=n-1, n-2, \ldots, 0) \tag{3}
\end{align*}
$$

all be integers. In this case d_{0} will be the unique nonnegative number less than β such that $x_{0}-d_{0}$ is an integral multiple of β, and x_{1} will then be $\left(x_{0}-d_{0}\right) / \beta$. In general d_{\imath} will be the unique nonnegative number less than β such that $x_{i}-d_{i}$ is an integral multiple of β, and x_{i+1} will then be $\left(x_{i}-d_{i}\right) / \beta$. The naturalness comes from the fact that these statements characterize the integers d_{i} when β is an integer.*

As we noted above, when β is not an integer, the d_{i} in the expansion (1) are digits by courtesy only, since they are not integers. In fact they may be nonterminating decimals. Curiously enough, only the integer parts of the d_{i} are needed to determine x_{0}. Specifically, let

$$
d_{i}^{\prime}=\left\lfloor d_{i}\right\rfloor
$$

[^0]Then the sequence $x_{0}, x_{1}, \ldots, x_{n}$ is uniquely determined by the sequence d_{0}^{\prime}, $d_{1}^{\prime}, \ldots, d_{n}^{\prime}$.

To see this, first note that the requirement that x_{n} be an integer implies that $d_{n}=d_{n}^{\prime}$. Now suppose that we have determined x_{i+1}, and set

$$
x_{i}^{\prime}=d_{i}^{\prime}+\beta x_{i+1}
$$

Then $x_{i}-x_{i}^{\prime}=d_{i}-d_{i}^{\prime}<1$. Since $x_{i} \geq x_{i}^{\prime}$, it follows that $x_{i}=\left\lceil x_{i}^{\prime}\right\rceil$.
There are two comments to be made about this result. First, if β were an integer with $2^{t}<\beta \leq 2^{t+1}$, then the digits of a base- β representation of a number would require $t+1$ bits for their binary representations. We have shown that for noninteger bases we can define integer digits d_{i}^{\prime} representable by the same number of bits. Moreover, the integer x_{0} can be evaluated by the recursion

$$
\begin{aligned}
x_{n} & =d_{n}^{\prime} \\
x_{i} & =\left\lceil d_{i}^{\prime}+\beta x_{i+1}\right\rceil \quad(i=n-1, n-2, \ldots, 0),
\end{aligned}
$$

which reduces to (3) when β is an integer.
The second comment concerns subbinary representation, where $1<\beta<2$. Here the digits d_{i}^{\prime} are zeros or ones, and each zero digit causes the current x_{i} to increase by at least one. As β approaches one, the proportion of zero digits increases, until the representation reduces to a one followed by $x_{0}-1$ zeros, which may properly be called a base-one representation of x_{0}.

[^0]: Received December 15, 1986; revised November 20, 1987.
 1980 Mathematics Subject (Classification (1985 Revision). Primary 11A63.
 *The referee has provided an equivalent characterization beginning " d_{0} is the distance from x_{0} to the largest multiple of β not greater than x_{0}, and x_{1} is that multiple." Some may find this more natural.

